WORN STONES WITH FLAT SIDES THE REGULARITY OF THE INTERFACE

1. Introduction

In [?] Daskalopoulos and Hamilton considered the free-boundary problem associated to the Gauss Curvature Flow with Flat sides. This is the flow describing the deformation of the a compact convex body M in \mathbb{R}^3 which is subject to wear under impact from any random angle. An example can be a stone on a beach impacted by the sea. The probability of impact at any point P on the surface Σ is proportional to the Gauss Curvature K. Therefore the surface evolves by the flow

$$\frac{\partial P}{\partial t} = KN$$

where N denotes the unit inward normal.

The Gauss Curvature Flow was introduced by Firey [F], who showed that it shrinks smooth, compact, strictly convex and centrally symmetric hypersurfaces in \mathbb{R}^3 to round points.

Tso [T] showed that if the initial surface Σ is smooth, compact and strictly convex, then the Gauss Curvature Flow admits a unique solution $\Sigma(t)$ which shrinks to a point at the exact time $T^* = V/4\pi$, where V is the volume enclosed by the initial surface Σ .

Chow [C] proved that, under certain restrictions on the second fundamental form of the initial surface, the Gauss Curvature flow shrinks smooth compact strictly convex hypersurfaces to round points.

Andrews [A] has showed and that the Gauss Curvature flow shrinks compact convex hypersurfaces to round points.

In [?] Daskalopoulos and Hamilton considered the case where the initial surface has flat sides and as a consequence the parabolic equation describing the motion of the hypersurface becomes degenerate where the curvature becomes zero. Hence, according to Hamilton's results in [H], the junction Γ between each flat side and the strictly convex part of the surface, where the equation becomes degenerate, behaves like a free-boundary propagating with finite speed.

_

Let us assume, for simplicity that the initial surface has only one flad side. The main objective of the work in [?] was to study the solvability and short time regularity of the interface Γ of the Gauss Curvature flow with flat sides, by viewing the flow as a *free-boundary* problem. Let us assume, for simplicity that the initial surface has only one flat side. It was shown in [?] that, under certain assumptions on the initial surface Σ which will guarantee that the junction curve Γ will start move at every point at time t=0, the Gauss Curvature Flow admits a solution $\Sigma(t)$, in $0 < t \le \tau$, for some time $\tau > 0$, and the junction $\Gamma(t)$ between the flat and strictly convex side is a *smooth curve*, for $0 < t \le T$. Moreover, each strictly convex side is smooth up to the interface, for $0 < t \le \tau$.

In this work we will show that under the same assumptions as in [?] the C^{∞} regularity of the strictly convex side up to the interface and the free-boundary $\Gamma(t)$ is preserved up to the focusing time of the flat side.

In [?] ben Andrews has shown that the surface $\Sigma(t)$ is of class $C^{1,1}$ up to the time it shinks to a point. This beautiful result will be crucial in this paper.

Let us assume that t = 0 we have

$$\Sigma = \Sigma_0 \cup \Sigma_1$$

where Σ_0 is the flat side and Σ_1 is the strictly convex part of the surface. The junction between the two sides is the curve

$$\Gamma = \Sigma_0 \cap \Sigma_1$$
.

Since the equation is invariant under rotation, we can also assume that Σ_0 lies on the z=0 plane and that Σ_1 lies above this plane. Then, the lower part of the surface Σ can be written as the graph of a function

$$z = f(x)$$

over a compact domain $\Omega \subset \mathbb{R}^2$ containing the initial flat side Σ_0 . We can choose the domain Ω to be the set

$$\Omega = \{ x \in \mathbb{R}^2 : |Df|(x) < \infty \}$$

so that f turns vertical at the boundary $\partial \Omega$. Our basic assumption on the initial surface is that the function f vanishes quadratically at z = 0 and that the junction curve Γ is strictly convex. Namely, setting

$$g=\sqrt{2f}$$

we assume that at time t = 0 the function g satisfies

(1.2)
$$|Dg(x)| \ge \lambda$$
 and $D_{\tau\tau}^2 g(x) \ge \lambda \quad \forall x \in \Gamma$

for some positive number $\lambda > 0$, where $D_{\tau\tau}^2$ denotes the second order tangential derivative at Γ . As explained in [?] condition (1.2) guarantees that the interface Γ will start to move at any point at time t = 0 making the Gauss Curvature Flow to behave like a free-boundary problem.

Assume that at time $T_0 > 0$ the flat side $\Sigma_1(T_0)$ contains the disc

$$B_{\rho_0} = \{ x \in \mathbb{R}^2 : |x| < \rho_0 \}$$

for some number $\rho_0 > 0$. For $0 < t \le T_0$ the lower part of the surface $\Sigma(t)$ can be written as the graph of a function

$$z = f(x,t)$$

on the set

$$\Omega(t) = \{ x \in \mathbb{R}^2 : |Df|(x,t) < \infty \}.$$

This is because the results in [?] guarantee the lower part of the surface will not turn vertical before the flat side shrinks to a point. Since $\Sigma(t)$ solves the Gauss Curvature Flow, the function f will satisfy the equation

(1.3)
$$f_t = \frac{\det D^2 f}{(1 + |Df|^2)^{3/2}}$$

by a standard computation. On the flat side we will always have z = 0, while on the strictly convex side we will have that z > 0. The function $g = \sqrt{2f}$ satisfies the equation

(1.4)
$$g_t = \frac{g \det D^2 g + g_y^2 g_{xx} - 2g_x g_y g_{xy} + g_x^2 g_{yy}}{(1 + g^2 |Dq|^2)^{3/2}}.$$

The following short time result was proven in [?]. We state it here for the convenience of the reader.

Theorem [DH](Short time Regularity) Let Σ be a weakly convex, compact hypersurface in \mathbb{R}^3 so that $\Sigma = \Sigma_1 \cup \Sigma_2$, where Σ_1 is flat and Σ_2 is strictly convex. Assume that at time t = 0 the lower part of Σ_2 can be written as the graph of a function f over a domain Ω containing the flat side and that the function

$$g = \sqrt{2f}$$

is of class $C^{2+\alpha}$ up to the interface z=0, for some $\alpha>0$ and satisfies conditions (1.2). Then, there exists a time $\tau>0$ for which the Gauss Curvature Flow (1.1) admits a solution $\Sigma(t)$ on $0 \le t \le \tau$. Moreover, the function

$$z = g(x, t)$$

with $g = \sqrt{2f}$ is smooth up to the interface z = 0 for all $0 < t \le \tau$. In particular the junction $\Gamma(t)$ between the strictly convex and the flat side will be a smooth curve for all t in $0 < t \le \tau$.

The main objective of this work is to show that under the assumptions of Theorem [DH], the function g remains smooth up to the interface for all $0 < t < T_0$.

Theorem 1.1. Assume that at time T_0 the flat side of the surface Σ contains the disc $D_{\rho_0} = \{x \in \mathbb{R}^2 : |x| < \rho_0\}$. Then, under the assumptions of Theorem [DH], the function $g = \sqrt{2f}$ is smooth up to the interface z = 0 for all $0 < t \le T_0$. In particular the junction $\Gamma(t)$ between the strictly convex and the flat side will be a smooth curve for all t in $0 < t \le T_0$.

The following Theorem due to Andrews [?] will be used in this paper: **Theorem** [A]

2. Finite and Non-Degenerate Speed of the Free-Boundary

In this section we will show that the free-boundary $\Gamma(t)$ moves with finite and non-degenerate speed. This will follow from certain differential inequalities which will be proved using the scaling of the equation and the maximum principle.

Throughout this section we will assume that z = f(x,t) is a solution of (1.3) such that $f(\cdot,t)$ is of class $C^{1,1}$ on the set

$$\Omega(t) = \{ x \in \mathbb{R}^2 : |Df(x)| < \infty \}$$

for all $0 \le t \le T$

and that $g=\sqrt{2f}$ is smooth up to the interface $\Gamma(t),$ on $0\leq t\leq \tau,$ for some $0<\tau\leq T.$

Lemma 2.1. The function

$$f_{\epsilon}(x,t) = \frac{1}{1 + B\epsilon} f((1 + \epsilon)x, (1 - A\epsilon)t)$$

is a supersolution (subsolution) of (1.3) if and only if

$$(2.1) -A + B - 4 > (<) \frac{3(B-1)|Df_{\epsilon}(x,t)|^2}{(1+|Df_{\epsilon}(x,t)|^2)}.$$

Proof. By direct compution we find that

$$f_{\epsilon t}(x,t) = \frac{1 - A\epsilon}{1 + B\epsilon} f_t((1 + \epsilon)x, (1 - A\epsilon)t)$$

$$= \frac{1 - A\epsilon}{1 + B\epsilon} \frac{\det(D^2 f((1 + \epsilon)x, (1 - A\epsilon)t))}{(1 + |Df((1 + \epsilon)x, (1 - A\epsilon)t)|^2)^{3/2}}$$

$$= \frac{1 - A\epsilon}{1 + B\epsilon} \frac{(1 + B\epsilon)^2}{(1 + \epsilon)^4} \frac{\det(D^2 f_{\epsilon}(x, t))}{(1 + (\frac{1 + B\epsilon}{1 + \epsilon})^2 |Df_{\epsilon}(x, t)|^2)^{3/2}}.$$

Using the expansion

$$(\frac{1+B\epsilon}{1+\epsilon})^2 = 1 + 2(B-1)\epsilon + o(\epsilon^2)$$

we obtain, after several simple calculations, that

$$(f_{\epsilon})_{t}(x,t) = \frac{1 - A\epsilon}{1 + B\epsilon} \frac{(1 + B\epsilon)^{2}}{(1 + \epsilon)^{4}} \left[1 - \epsilon \frac{3(B - 1)|Df_{\epsilon}(x,t)|^{2}}{2(1 + |Df_{\epsilon}(x,t)|^{2})} + O(\epsilon^{2}) \right] \frac{\det(D^{2}f_{\epsilon}(x,t))}{(1 + |Df_{\epsilon}(x,t)|^{2})^{3/2}}$$

$$= \left[1 + \epsilon \left(-A + B - 4 - \frac{3(B - 1)|\nabla f_{\epsilon}(x,t)|^{2}}{2(1 + |\nabla f_{\epsilon}(x,t)|^{2})} \right) + O(\epsilon^{2}) \right] \frac{\det(D^{2}f_{\epsilon}(x,t))}{(1 + |Df_{\epsilon}(x,t)|^{2})^{3/2}}$$

and hence

$$f_{\epsilon_t}(x,t) > (<) \frac{\det(D^2 f_{\epsilon}(x,t))}{(1 + |Df_{\epsilon}(x,t)|^2)^{3/2}}$$

if and only if (2.1) holds.

The finite speed of the free-boundary will follow as a consequence of the following differential inequality:

Lemma 2.2. If $B_{\rho_0} \subset \{x \in \Omega(t) : f(x,T) = 0\}$, then there exists $\delta_0 > 0$ s.t.

$$(2.2) -B f(x,t) + x \cdot \nabla f(x,t) - At f_t(x,t) > 0$$

on the set $\{(x,t): f(x,t) \leq \delta_0, 0 \leq t \leq T\}$, for some constants A, B > 0.

Proof. By the uniform continuity of f(x,t) on $0 \le t \le T$, for a given $0 < \eta < 1$, there is a $0 < \delta_0 << \eta$ such that

(2.3)
$$\{x: f(x,t) \le \delta_0, \ 0 \le t \le T\} \subset \{x: d(x,\Omega(t)) \le \frac{\eta r_0}{2}\}$$

and

$$\{(1+\epsilon)x: d(x,\Omega(t)) \le \frac{\eta r_0}{2}\} \subset \{x: d(x,\Omega(t)) \le \eta r_0\}$$

for all $\epsilon << \delta_0$.

Let us consider the function

$$f_{\epsilon}(x,t) = \frac{1}{1 + B\epsilon} f((1 + \epsilon)x, (1 - A\epsilon)t),$$

with $A = \delta_0^2$ and B = 8 and $\epsilon << \delta_0 << \eta$. We will show that f_{ϵ} is a supersolution of equation (1.3) on the set $\mathcal{A}_{\delta_0} = \{x: f(x,t) \leq \delta_0, 0 \leq t \leq T\}$ such that $f_{\epsilon} \geq f$ at the parabolic boundary of \mathcal{A}_{δ_0} . The comparison principle will then imply that $f_{\epsilon} \geq f$ on \mathcal{A}_{δ_0} . Hence

$$\frac{d}{d\epsilon}\Big|_{\epsilon=0} f_{\epsilon} \ge 0$$

on \mathcal{A}_{δ_0} proving the estimate (2.2).

By Lemma 2.1, in order to show that f_{ϵ} is a supersolution of (1.3) it is enough to prove that

$$-A + B - 4 > \frac{3(B-1)|Df_{\epsilon}(x,t)|^2}{(1+|Df_{\epsilon}(x,t)|^2)}.$$

For $A = \delta_0^2 < 1$ and B = 8 the above inequality is satisfied if

$$|Df_{\epsilon}((1+\epsilon)x,(1-A\epsilon)t)|^2 \le \frac{1}{7}, \quad \text{on } \mathcal{A}_{\delta_0}.$$

Since

$$|Df_{\epsilon}((1+\epsilon)x, (1-A\epsilon)t)| = \frac{1+\epsilon}{1+B\epsilon} |Df((1+\epsilon)x, (1-A\epsilon)t)| \le |Df((1+\epsilon)x, (1-A\epsilon)t)|$$

it is enough to show that

$$|Df((1+\epsilon)x,(1-A\epsilon)t)| \le \frac{1}{\sqrt{7}}$$

on \mathcal{A}_{δ_0} . Because the initial data is of class $C^{1,1}$, Andrew's result in [?] shows that $f(\cdot,t)$ is of class $C^{1,1}$ uniformly on $0 \le t \le T$. Hence, there exists a constant M independent of t such that

$$(2.5) |Df(x,t)| \le M d(x, \partial \Omega(t)).$$

Assume now that $f(x,t) \leq \delta_0$. Because f is convex and satisfies (1.3) the time derivative f_t is nonnegative and hence $f(x,(1-A\epsilon)t) \leq \delta_0$. By (2.3) and (2.4) we have $d((1+\epsilon)x,\partial\Omega((1-A\epsilon)t)) \leq \eta r_0$ which can be made arbitrarily small by choosing η small. Hence by (2.5) we can make $|Df(1+\epsilon)x,(1-A\epsilon)t| \leq \frac{1}{\sqrt{7}}$ on \mathcal{A}_{δ_0} .

It remains to show that $f_{\epsilon} \geq f$ on the parabolic boundary of \mathcal{A}_{δ_0} . By simple differentiation we compute

$$\frac{d}{d\epsilon}\Big|_{\epsilon=0} f_{\epsilon}(x,0) = -Bf(x,0) + x \cdot Df(x,0)$$

and therefore $\frac{d}{d\epsilon}|_{\epsilon=0}f_{\epsilon}(x,0)>0$, on $\{x: f(x,0)\leq\delta_0\}$, for δ_0 sufficiently small, since $f(x,0)\approx C\,d(x,\Omega(0))^2$ by assumption. This implies that $f_{\epsilon}(x,0)\geq f(x,0)$ for small $\epsilon>0$.

On the lateral boundary of \mathcal{A}_{δ_0} where $f(x,t) = \delta_0$ we have $d(x,\partial\Omega(t)) \leq \eta r_0$, by (2.3). By the convexity of f the radial derivative f_r satisfies the estimate $f_r(x,t) \geq \frac{\delta_0}{nr_0}$ and therefore

$$x \cdot Df = rf_r(x,t) \ge r_0 \frac{\delta_0}{\eta r_0} = \frac{\delta_0}{\eta}, \quad \text{on } \partial_p \mathcal{A}_{\delta_0}.$$

We conclude that

$$-Bf(x,t) + x \cdot Df(x,t) - At f_t(x,t) \ge -B\delta_0 + \frac{\delta_0}{n} - \delta_0^2 T |f_t|_{L^{\infty}} > 0$$

if η is sufficeently small which proves that $f_{\epsilon}(x,t) \geq f(x,t)$ on the parabolic boundary of \mathcal{A}_{δ_0} , finishing the proof of the lemma.

Let us express the interface $\Gamma(t)$ as a function $r = \gamma(\theta, t)$ where (r, θ) denote the polar coordinates.

Corollary 2.3. If $B_{\rho_0} \subset \{x \in \Omega(t) : f(x,t) = 0\}, 0 \le t \le T$, then there exists A > 0 such that

(2.6)
$$\gamma(\theta, t) \ge e^{-\frac{t - t_0}{A t_0}} \gamma(\theta, t_0).$$

for all $0 < t_0 \le t \le T$. In particular, the free-boundary $r = \gamma(\theta, t)$ moves with finite speed, on $0 \le t \le T$.

Proof. From inequality (2.2) we have

$$0 \ge \frac{Bf(x,t)}{At} - \frac{x}{At} \cdot Df(x,t) + f_t(x,t)$$
$$\ge \frac{Bf(x,t)}{AT} - \frac{x}{At_0} \cdot Df(x,t) + f_t(x,t)$$

and hence

(2.7)
$$\frac{d}{dt} \left(e^{\frac{B}{AT}(t-t_0)} f(e^{-\frac{t-t_0}{At_0}} x_0, t) \right) \le 0$$

which immediately implies the inequality (2.6).

Let us now express, in polar coordinates, by $r = \gamma_{\epsilon}(\theta, t)$ the ϵ -level set of the function f. Inequality (2.7) implies that $\gamma_{\epsilon}(\theta, t)$ has finite speed, as shown next:

Corollary 2.4. If $B_{\rho_0} \subset \{x \in \Omega(t) : f(x,t) = 0\}, 0 \le t \le T$, then there exists A > 0 such that

(2.8)
$$\gamma_{\epsilon}(\theta, t) \ge e^{-\frac{t - t_0}{A t_0}} \gamma_{\epsilon}(\theta, t_0).$$

for all $0 < t_0 \le t \le T$. In particular, for each $\epsilon > 0$, the ϵ -level set $r = \gamma_{\epsilon}(\theta, t)$ of f moves with finite speed, on $0 \le t \le T$.

Proof. Indeed, assume that $r_0 = \gamma_{\epsilon}(\theta, t_0)$ and denote by x_0 the point $x_0 = (r_0, \theta)$. Then, by inequality (2.7) we have:

$$f(e^{-\frac{t-t_0}{At_0}}x_0,t) \le f(x_0,t_0) = e^{-\frac{B}{AT}(t-t_0)}\epsilon \le \epsilon$$

implying that

$$e^{-\frac{t-t_0}{At_0}}\gamma_{\epsilon}(\theta, t_0) = e^{-\frac{t-t_0}{At_0}} r_0 \le \gamma_{\epsilon}(\theta, t)$$

as desired.

We will next show that the free-boundary moves with non-degenerate speed. This will follow from the next inequality:

Lemma 2.5. There exist positive constants A, B and C for which

(2.9)
$$-Bf(x,t) + x \cdot Df(x,t) - (C + At) f_t(x,t) \le 0$$

on 0 < t < T.

Proof. By the short time regularity, $g = \sqrt{2f}$ is a smooth function up to the interace $\Gamma(t)$ on $0 \le t \le \tau$, $\tau > 0$. Set $t^* = \tau/2$. We will show, using the comparison principle, that

(2.10)
$$f_{\epsilon}(x,t) = \frac{1}{1 + B\epsilon} f((1 + \epsilon)x, (1 - A\epsilon)t - C\epsilon) \le f(x,t)$$

on $A_{t^*} = \{f(x,t) \leq 1, t^* \leq t \leq T\}$, for an appropriate choice of constants A, B and C and ϵ sufficiently small. We will choose A = B + 1, for some constant B. Therefore -A + B - 4 < 0 which guarantees that f_{ϵ} is a subsolution of (1.3), by Lemma 2.1. Hence we only need to show that $f_{\epsilon} \leq f$ at the parabolic boundary of A_{t^*} which is equivalent to showing that the inequality (2.9) holds there. At f = 1 one can choose B sufficently large so that

$$-Bf + x \cdot Df < 0$$

since $f(cdot,t) \in C^{1,1}$ uniformly in $0 \le t \le T$. Hence (??) holds at the lateral boundary of A_{t^*} . To show that (??) holds on $\{f(x,t) \le 1, t = t^*\}$ we will actually show that

$$-Bg(x,t^*) + x \cdot Dg(x,t^*) - Cg_t(x,t^*) \le 0$$

holds on $\{0 < g(x,t^*) \le \sqrt{2}\}$. The function g satisfies equation (1.4) and it is smooth up to the interface on $0 \le t \le 2t^*$. Also, $|Dg|(x,t^*) \ge c > 0$ and $g_{\tau\tau} \ge c > 0$ at $\Gamma(t^*)$ by the initial assumptions on g. Hence, there exist numbers

 $\rho > 0$ and $c_0 > 0$ such that $g_t \ge c_0 > 0$ on $\{g(x, t^*) > 0, d(x, \Gamma(t^*)) < \rho\}$ and therefore we can make

$$x \cdot Dg(x, t^*) - C g_t(x, t^*) \le 0$$

on this set by choosing C sufficiently large. Having chosen C we can know choose B sufficiently large so that

$$-Bg(x,t^*) + x \cdot Dg(x,t^*) \le 0$$

on $\{g(x,t^*) \leq \sqrt{2}, d(x,\Gamma(t^*)) \geq \rho\}$. Combining both estimates we conclude that (??) holds $\{f(x,t) \leq 1, t=t^*\}$, which implies the validity of (2.10). Differentiating with respect to ϵ we conclude

$$\frac{d}{d\epsilon}\Big|_{\epsilon=0} f_{\epsilon}(x,t) \le 0$$

for $t^* \le t \le T$, which immediately implies inequality (2.9) on $t^* \le t \le T$. Since the estimate also holds on $0 \le t \le t^*$ the lemma follows.

Corollary 2.6. There exist positive constants A and C such that

(2.12)
$$\gamma(\theta, t) \le e^{-\frac{t - t_0}{C + At_0}} \gamma(\theta, t_0)$$

for $t_0 \le t \le T$. In particular the free-boundary moves with non-degenerate speed.

Proof. From inequality (2.9) we have

$$0 \le \frac{Bf(x,t)}{C+At} - \frac{x}{C+At} \cdot Df(x,t) + f_t(x,t)$$
$$\le \frac{Bf(x,t)}{C+At_0} - \frac{x}{C+AT} \cdot Df(x,t) + f_t(x,t)$$

and hence

$$\frac{d}{dt} \left(e^{\frac{B(t-t_0)}{C+AT}} f(e^{-\frac{t-t_0}{C+At_0}} x_0, t) \right) \le 0$$

which immediately implies the inequality (2.12).

3. Gradient Estimates

In this section we will establish estimates from above and bellow on the gradient |Dg| of the solution g of (1.4). Lets assume that at t=0 the function g satisfies the hypotheses of Theorem 1.1. and that g is a solution of (1.4) which is smooth up to the interface on $0 \le t \le T$. We can assume, without loss of generality, that

$$\max_{x \in \Omega(t)} g(x,t) \ge 2, \qquad \text{for } 0 \le t \le T.$$

The estimate from above follows as a straight forward consequence of the maximum principle.

Lemma 3.1. Under the assumptions of Theorem 1.1 and (3.1), there exists a constant C such that

$$|Dg| \le C$$
, on $0 \le g(\cdot, t) \le 1$, $0 \le t \le T$.

Proof. Let us approximate f by a decreasing sequence of solutions f_{ϵ} of (1.3) which are positive, strictly convex and smooth on $\{x \in \mathbb{R}^2 : |Df_e(x)| < \infty\}, 0 \le t \le T$. Set $g_{\epsilon} = \sqrt{2f_e}$. We can choose the $f'_{\epsilon}s$ such that $|Dg_e| \le C$ at t = 0, on the set $\{x : 0 \le g_{\epsilon} \le 1\}$ and $Dg_{\epsilon} \le C$ at $g_{\epsilon} = 1, 0 \le t \le T$, for some uniform constant C. The last estimate holds because $|Dg| = |Df|/g \le C$, at $g = 1, 0 \le t \le T$, by the $C^{1,1}$ regularity of f proven in [?] and condition (3.1).

It is enough to show that

$$|Dg_{\epsilon}| \leq C$$
, on $0 \leq g_{\epsilon}(\cdot, t) \leq 1$, $0 \leq t \leq T$.

To simplify the notation, we will denote g_{ϵ} by g, just assuming that g is a strictly positive and a smooth solution of (1.4) such that $f = g^2/2$ is convex. Set $X = |Dg|^2 = (g_x^2 + g_y^2)/2$. We will show, using the maximum principle that $X \leq \tilde{C}$, on $0 \leq g \leq 1$, $0 \leq t \leq T$, provided that $X \leq \tilde{C}$ at t = 0 and g = 1, $0 \leq t \leq T$. Indeed, assume that X attains an interior maximum at the point $P_0 = (x_0, y_0, t_0)$. We can rotate the coordinates so that

(3.2)
$$g_x > 0$$
 and $g_y = 0$, at P_0 .

We will then have

$$X_x = g_x g_{xx} + g_y g_{xy} = g_x g_{xx} = 0$$

and

$$X_y = g_x \, g_{xy} + g_y \, g_{yy} = g_x \, g_{xx} = 0$$

at P_0 , implying that

(3.3)
$$g_{xx} = g_{xy} = 0$$
, at P_0 .

The only non-zero second derivative of g is g_{yy} which is actually non-negative by the convexity of the level sets of g. Differentiating once more, we compute

$$X_{xx} = g_x g_{xxx} + g_y g_{xxy} + g_{xx}^2 + g_{xy}^2 = g_x g_{xxx} \le 0$$

and

$$X_{yy} = g_x g_{xyy} + g_y g_{yyy} + g_{xy}^2 + g_{yy}^2 = g_x g_{xyy} + g_{yy}^2 \le 0$$

at P_0 which implies that

(3.4)
$$g_x g_{xxx} \leq 0$$
 and $g_x g_{xyy} \leq 0$, at P_0 .

On the other hand, differentiating the equation

$$g_t = \frac{g \det D^2 g + g_y^2 g_{xx} - 2g_x g_y g_{xy} + g_x^2 g_{yy}}{(1 + g^2 |Dg|^2)^{3/2}}$$

with respect to x and using (3.2) and (3.3), we find that at the point P_0

$$X_t = g_x g_{xt} = \frac{gg_x g_{yy} g_{xxx} + g_x^3 g_{xyy}}{(1 + 2g^2 X)^{3/2}} - \frac{4gg_x X + 2g^2 X_x}{(1 + 2g^2 X)^{5/2}}.$$

Since $g_x > 0$, $X_x = 0$, $X \ge 0$ and $g_{yy} \ge 0$ at P_0 , using (3.4) we finally conclude that $X_t \leq 0$ at P_0 which implies the desired claim, therefore finishing the proof of the lemma.

We will next establish a lower bound on the gradient |Dg| of g.

Lemma 3.2. Under the assumptions of Theorem 1.1, if $B_{\rho_0} \subset \{(x,y): g(x,y,T) =$ 0} and g is smooth up to the interface on $0 \le t \le T$, then there exists a constant c>0 depending only on ρ_0 and the initial data, such that

$$|Dg| \ge c$$
, on $\{(x, y, t) : g(x, y, t) > 0, 0 \le t \le T\}$.

Proof. Consider the quantity $X = x g_x + y g_y$. Using the maximum principle, we will show that

(3.5)
$$X \ge c_T$$
, on $\{(x, y, t) : g(x, t) > 0, 0 \le t \le T\}$

provided that $X \ge c_0 > 0$ at t = 0. This will imply the lemma.

Let us assume first that X becomes minimum at and interior point P_0 i.e. $X(P_0) = \min_{t < t_0} X(x,t)$. Since, both the equation (1.4) and the quantity X are rotationally invariant, we can assume without loss of generality that $y_0 = 0$ at P_0 . Hence, at the point P_0 we will have:

$$X_x = x g_{xx} + g_x + y g_{yx} = x g_{xx} + g_x = 0$$

and

$$X_y = y g_{yy} + g_y + x g_{xy} = x g_{xy} + g_y = 0$$

implying that

(3.6)
$$g_{xx} = -\frac{g_x}{x} \quad \text{and} \quad g_{xy} = -\frac{g_y}{x}, \quad \text{at } P_0.$$

Differentiating once more we obtain

$$X_{xx} = xg_{xxx} + 2g_{xx} + yg_{xxy} = xg_{xxx} + 2g_{xx}$$

12

$$X_{xy} = xg_{xxy} + 2g_{xy} + yg_{xxy} = xg_{xxy} + 2g_{xy}$$

and

$$X_{yy} = xg_{xyy} + 2g_{yy} + yg_{yyy} = xg_{xyy} + 2g_{yy}$$

implying, in particular, that

(3.7)
$$X_{xx} = xg_{xxx} + 2g_{xx} \ge 0$$
 and $X_{yy} = xg_{xyy} + 2g_{yy} \ge 0$

at the minumum point P_0 .

On the other hand, differentiating in time t we compute

$$X_t = x g_{xt} + y g_{yt} = x g_{xt}$$

at P_0 . To compute g_{xt} at P_0 we will differentiate the equation (1.4) with respect to x and use (3.6) and (3.7). To simplify the notation let us set $I = (1 + g^2 g_x^2 + g^2 g_y^2)$. Differentiating (1.4) with respect to x we obtain

$$X_t = x g_{xt} = I^{-\frac{3}{2}} \{ x g_{xxx} [g g_{yy} + g_y^2] - 2x g_{xxy} [g g_{xy} + g_x g_y] + x g_{xyy} [g g_{xx} + g_x^2] \}$$
$$-3I^{-1} x g_t \{ g (g_x^2 + g_y^2) + g^2 (g_x g_{xx} + g_y g_{yx}) \}.$$

Hence at the point P_0 where $X = x g_t$ and (3.7) hold, we compute after tidious calculations, that

$$X_t = I^{-\frac{3}{2}}(3xg_x - 2g) \det D^2g - 2g_t - 3XI^{-1} \{g|Dg|^2 + g^2(g_xg_{xx} + g_yg_{yx})\}.$$

We can substitute the second order derivatives g_{xx} and g_{xy} in the equation above by $g_{xx} = -\frac{g_x}{x}$ and $g_{xy} = -\frac{g_y}{x}$, hence obtaining that

$$X_t = I^{-\frac{3}{2}}(3xg_x - 2g)\left(-\frac{g_xg_{yy}}{x} - \frac{g_y^2}{x}\right) - 2g_t - 3XI^{-1}\left\{g|Dg|^2 + g^2\left(-\frac{g_x^2}{x} - \frac{g_y^2}{x}\right)\right\}.$$

or symplifying a little more

$$(3.8) X_t = I^{-\frac{3}{2}} x^{-1} (2g - 3xg_x) (g_x g_{yy} + g_y^2) - 2g_t + X I^{-1} (g|Dg|^2 + g^2 \frac{|Dg|^2}{x}).$$

We wish to show that at the point P_0 , where $x \ge \rho_0$, X satisfies

$$(3.9) X_t \ge -CX$$

where C is a constant depending on ρ_0 . To this end we will use Corollary 2.4 to show that

$$(3.10) |g_t| \le C g_x and |g_x g_{yy}| \le C, at P_0$$

To show the first estimate, let us denote by $\gamma_{\epsilon}(t)$ the ϵ -level set of g. Then, by Corollary 2.4

$$|\gamma'_{\epsilon}(t)| < C$$

for some constant C. Therefore, differentiating the equation $g(\gamma_{\epsilon}(t), t) = \epsilon$ with respect to t, we obtain

$$Dg \cdot \gamma_{\epsilon}'(t) + g_t = 0$$

which immediately implies that $|g_t| \leq C |Dg|$ at P_0 . It remains to observe that at the point P_0 where y = 0 we have g_x is equal to the radial derivative g_r and hence $|Dg| \leq C g_x$ for some constant C depending only on ρ_0 . To prove the second estimate we write (1.4) at P_0 using (3.7) to obtain, after several calculations that

$$g_t = g_x \frac{(1 - \frac{g}{x}) g_x g_{yy} + C(\rho_0, |Dg|)}{1 + g^2 |Dg|^2}$$

where $C(\rho, |Dg|)$ is a constant depending only on ρ and the upper bound on |Dg| poven in Lemma 3.1. Hence, we can solve the above equality with respect to $g_x g_{yy}$ and use the estimate $|Dg| \leq C g_x$ to conclude the bound $g_x g_{yy} \leq C$, therefore proving (3.9).

Assume next that the minimum of X occurs at a free-boundary point P_0 where g = 0. Since X is rotationally invariant we can assume this time that $g_y = 0$ at the point P_0 . Then at P_0 we have:

$$X_x = x g_{xx} + g_x + y g_{yx} \ge 0$$

and

$$X_y = y g_{yy} + g_y + x g_{xy} = y g_{yy} + x g_{xy} = 0$$

implying that

(3.11)
$$x g_{xx} + g_x + y g_{yx} \ge 0$$
 and $g_{xy} = -\frac{y}{x} g_{yy}$ at P_0 .

Also, the second derivative X_{yy} satisfies

(3.12)
$$X_{yy} = xg_{xyy} + 2g_{yy} + yg_{yyy} \ge 0$$
, at P_0 .

On the other hand, $X_t = x g_{xt} + y g_{yt}$ and hence, differentiating eqrefeqn-g with respect to x and y, we find after several calculations that at the point P_0 where g = 0 we have

$$X_t = xg_{xxx}[gg_{yy} + g_y^2] - 2xg_{xxy}[gg_{xy} + g_xg_y] + xg_{xyy}[gg_{xx} + g_x^2] + 3xg_x \det D^2 g$$
$$+ yg_{yyy}[gg_{xx} + g_x^2] - 2yg_{yyx}[gg_{xy} + g_xg_y] + yg_{yxx}[gg_{yy} + g_y^2] + 3yg_y \det D^2 g$$

Hence, using that $g_y = 0$ at P_0 abd (3.12) we conclude, after several cancellations, that

$$(3.13) X_t = g_x^2 \left[x g_{xyy} + y g_{yyy} \right] + 3x g_x \left[g_{xx} g_{yy} - g_{xy}^2 \right]$$

Let us denote by $\gamma(t)$ the free-boundary curve at time t. Then,

$$\frac{d}{dt}X(\gamma(t),t) = X_t + DX \cdot \gamma'(t).$$

Since $X_y = 0$ and $g_y = 0$ at P_0 and $g_t = -Dg \cdot \gamma'(t)$ at the free-boundary, we have

$$DX \cdot \gamma'(t) = X_x \frac{Dg \cdot \gamma'(t)}{g_x} = \left[xg_{xx} + g_x + yg_{xy} \right] \left(-\frac{g_t}{g_x} \right)$$

and hence using that $g_t = g_x^2 g_{yy}$ at the free bouldary point P_0 where g = 0 and also $g_y = 0$ we conclude that

(3.14)
$$DX \cdot \gamma'(t) = -[xg_{xx} + g_x + yg_{xy}]g_xg_{yy}.$$

Combining the inequalities (3.12) - (3.14) we finally obtain the estimate

$$\frac{d}{dt}X(\gamma(t),t) \ge -2g_x^2g_{yy} - 3xg_x[g_{xx}g_{yy} - g_{xy}^2] - [xg_{xx} + g_x + yg_{xy}]g_xg_{yy}.$$

Substituting $g_{xy} = -\frac{y}{x}g_{yy}$ we find after some cancellations that

$$\frac{d}{dt}X(\gamma(t),t) \ge 2g_x g_{yy} \left[xg_{xx} + yg_{xy} \right] + g_x^2 g_{yy}$$

and hence using once more the inequality $x g_{xx} + g_x + y g_{yx} \ge 0$ at P_0 we conclude that

$$\frac{d}{dt}X(\gamma(t),t) \ge -g_x^2 g_y y = -\frac{g_x g_{yy}}{x}X.$$

It is an immediate consequence of Corollary 2.3 that $|g_t/g_x| = |g_x g_{yy}| \le C$ at the free-boundary point P_0 . Therefore we finally obtain that

(3.15)
$$\frac{d}{dt}X(\gamma(t),t) \ge -CX, \quad \text{at } P_0.$$

We have shown above that inequalities (3.9) or (3.15) hold respectively at a minimum interior or boundary point P_0 of X. This immediately implies that

$$\min_{\{g(\cdot,t)>0\}} X(t) \ge \min_{\{g(\cdot,0)>0\}} X(0) e^{-Ct}$$

for all $0 \le t \le T$, from which the desired estimate follows.

As a consequence of Lemma 2.6 and 3.2 and Corollary 2.4, we obtain the following bound on the speed of the level sets of the function g. Denoting, in polar coordinates, by $r = \gamma_{\epsilon}(\theta, t)$ the ϵ -level set of the function g, we have the following: **Corollary 3.3.** Under the assumptions of Lemma 3.2 there exist positive constants C_1 and C_2 , depending only on r_0 and the initial data, such that

$$(3.16) -C_2 \le (\gamma_{\epsilon})_t(\theta, t) \le -C_1 < 0, 0 \le t \le T.$$

Proof. We have shown in Corollary 2.4 that

$$\gamma_{\epsilon}(\theta, t) \ge e^{-b_1(t-t_0)} \gamma_{\epsilon}(\theta, t_0), \quad t_0 \le t \le T$$

for some positive constant $b_1 > 0$. This implies that

$$(\gamma_{\epsilon})_{t}(\theta, t_{0}) = \lim_{t \to t_{0}} \frac{\gamma_{\epsilon}(\theta, t) - \gamma_{\epsilon}(\theta, t_{0})}{t - t_{0}} \ge \lim_{t \to t_{0}} \frac{e^{-b_{1}(t - t_{0})} - 1}{t - t_{0}} = -b_{1}$$

which implies the left side of inequality (??) with $C-2=b_1$. To prove the other side, let us recall from the proof of Corollary 2.6 that

$$\frac{d}{dt} \left(e^{2a_2(t-t_0)} f(e^{-b_2(t-t_0)} \gamma_{\epsilon}(\theta, t), \theta, t) \right) \ge 0$$

for some positive constants a_2 and b_2 . This implies that

$$f(e^{-b_2(t-t_0)}\gamma_{\epsilon}(\theta, t_0), \theta, t) \ge e^{2a_2(t-t_0)} g(\gamma_{\epsilon}(\theta, t_0), \theta, t_0)$$

showing that

$$g(e^{-b_2(t-t_0)}\gamma_{\epsilon}(\theta,t_0),\theta,t) \ge e^{a_2(t-t_0)}g(\gamma_{\epsilon}(\theta,t_0),\theta,t_0) = \epsilon e^{-a_2(t-t_0)}.$$

To simplify the notation, set $P(\theta,t) = (e^{-b_2(t-t_0)}\gamma_{\epsilon}(\theta,t_0),\theta,t)$. Then, for any small number $\delta > 0$ we have

$$g(e^{-b_2(t-t_0)}\gamma_{\epsilon}(\theta,t_0) + \delta,\theta,t) \ge g(P(\theta,t)) + g_r(P(\theta,t))\,\delta + o(\delta^2)$$

where, by Corollary 2.4 $g_r(P(\theta,t)) \ge c > 0$. Hence,

$$g(e^{-b_2(t-t_0)}\gamma_{\epsilon}(\theta,t_0)+\delta,\theta,t)\geq \epsilon+c\,\delta+o(\delta^2)\geq \epsilon=g(\gamma_{\epsilon}(\theta,t_0),\theta,t_0)$$

provided $\delta \ge \frac{\epsilon e^{-a_2(t-t_0)}}{c}$. Set

$$\delta = \frac{\epsilon e^{-a_2(t-t_0)}}{c} = \frac{\epsilon a_2(t-t_0)}{c} + o(t-t_0).$$

Then it follows from the above, that

$$\gamma_{\epsilon}(\theta, t) \le e^{-b_2(t - t_0)} \gamma_{\epsilon}(\theta, t_0) + \delta$$

and hence, as $t \to t_0$ we have

$$\frac{\gamma_{\epsilon}(\theta, t) - \gamma_{\epsilon}(\theta, t_0)}{t - t_0} \le \frac{e^{-b_2(t - t_0)} - 1}{t - t_0} \gamma_{\epsilon}(\theta, t_0) + \frac{\epsilon a_2}{c} + o(1)$$

implying that

$$\dot{\gamma}_{\epsilon}(\theta, t) \leq -b_2 \gamma_{\epsilon}(\theta, t_0) + \frac{\epsilon a_2}{c}.$$

Since $\gamma_{\epsilon}(theta, t_0) \geq r_0$ we can choose ϵ suffciently small depending only on r_0 so that $b_2r_0 - \frac{\epsilon a_2}{c} \geq b_2r_0$, proving that $\dot{\gamma}_{\epsilon}(\theta, t) \leq -b_2r_0$ on $0 \leq t \leq T$. Setting $C_1 = b_2 r_0$ right side of inequality (3.16) follows.

4. Second Order Derivative Estimates

In this section we will establish certain bounds on the Gauss Curvature $K = \det(D^2f)/(1+|Df|^2)$ and the second derivatives of the functions f and g. We will assume as in the previous section that $g = \sqrt{2f}$ satisfies the hypotheses of Theorem 1.1 and that g is smooth up to the interface on $0 \le t \le T$. By Theorem [A] the function f is of class $C^{1,1}$ and satisfies

(4.1)
$$||f||_{C^{1,1}} \le C$$
, on $0 \le t \le T$

where C depends only on the initial data. The first results provides a bound from above and bellow on $\frac{K}{g}$. Its proof is an immediate consequence of Lemma 3.2 and Corollary 3.3.

Lemma 4.1. Under the assumptions of Theorem 1.1, if $B_{\rho_0} \subset \{(x,y) : g(x,y,T) = 0\}$ and g is smooth up to the interface on $0 \le t \le T$, then there exists a constant c > 0 depending only on ρ_0 and the initial data, such that the Gauss Curvature $K = \det D^2 f/(1 + |Df|^2)$ satisfies the bound

$$(4.2) 0 < c \le \frac{K}{q} \le \frac{1}{c}, on \ 0 \le t \le T$$

Proof. It is enough to establish the bound (4.2) near the interface. Since $f_t = K/(1 + |Df|^2)^{1/2}$, $g_t = f_t/g = \text{and } |Df|$ is bounded above near the interface, it is enough to estimate g_t from above and below.

Using the notation of Corollary 3.3, let $r = \gamma_{\epsilon}(\theta, t)$ denote, in polar coordinates, the ϵ -level set of g. Differentiating the equation $g(\gamma_{\epsilon}(\theta), \theta, t) = \epsilon$ with respect to θ we obtain

$$g_r \cdot \dot{\gamma}_{\epsilon}(\theta, t) + g_t = 0$$

which implies that

$$g_t = -g_r \cdot \dot{\gamma}_{\epsilon}(\theta, t).$$

By Lemmas 3.1 and 3.2 and the convexity of the level sets of g we have

$$0 < c < q_r < c^{-1}$$

while by Corollary 3.3

$$-C_2 \le \dot{\gamma}_{\epsilon}(\theta, t) \le -C_1 < 0, \qquad 0 \le t \le T.$$

Multiplying the above inequalities we obtain the estimate

$$C_1 c < g_t = g_r \cdot \dot{\gamma}_{\epsilon}(\theta, t) < C_2 c^{-1}$$

which immediately implies the desired result.

As an immediate Corollary of the bound (4.2) we obtain:

Corollary 4.2. Under the assumptions of Lemma 4.1 the time derivative g_t of the solution g of (1.4) satisfies the bound

$$(4.3) 0 < c \le g_t \le c^{-1}$$

Lemma 4.3. Under the assumptions of Theorem 1.1, if $B_{\rho_0} \subset \{(x,y) : g(x,y,T) = 0\}$ and g is smooth up to the interface on $0 \le t \le T$, then there exists a constant C > 0 for which

$$0 < g_{\tau\tau} \le C$$

with τ denoting the tangential direction to the level sets derivative g.

Proof. Since the level sets of g are strictly convex, the derivetive $g_{\tau\tau}$ is strictly positive. To establish the bound from above, we will use the maximum principle on the quantity

$$X = g_y^2 g_{xx} - 2g_x g_y g_{xy} + g_x^2 g_{yy} + \Delta f.$$

Denoting by ν and τ respectively, the normal and tangetial direction to the level sets of g, we can express the quantity X as

$$X = (g + g_{\nu}^2) g_{\tau\tau} + (g g_{\nu\nu} + g_{\nu}^2).$$

We have shown in the previous section that

$$0 < c \le g_{\nu} \le c^{-1}$$
, on $g > 0$, $0 \le t \le T$

for some c>0. In addition, because $f\in C^{1,1}$ the Laplacian Δf is bounded. Therefore, an upper bound on X will imply the desired upper bound on $g_{\tau\tau}$. The purpose of adding the term Δf on X is to be able to control the sign of the error terms on the evolution equation of X.

Since $X = g_t + \Delta f$ at the free-boundary g = 0, Corollary 4.2 implies that

$$X \le C$$
, at $g = 0$.

18

Hence, we can assume that X attains its maximum at an interior point $P_0 = (x_0, y_0, t_0)$. Also, since X is rotationally invariant, we can assume, without loss of generality, that $g_y = 0$ at the point P_0 , i.e. $g_\nu = g_x$ at P_0 . Hence $X = (g + g_x^2)g_{yy} + gg_{xx} + (gg_{xx} + g_x^2)$ at P_0 . Since X has a maximum at P_0 we have

$$X_x = gg_{xxx} + (g + g_x^2)g_{xyy} + 2g_x \det D^2 g + 3g_x g_{xx} + g_x g_{yy} = 0$$

and

$$X_y = gg_{xxy} + (g + g_x^2)g_{yyy} + 2g_x g_{xy} = 0,$$

implying that

(4.4)
$$g_{xyy} = -\frac{gg_{xxx} + 2g_x \det D^2 g + 3g_x g_{xx} + g_x g_{yy}}{g + g_x^2}$$

and

$$(4.5) g_{yyy} = -\frac{gg_{xxy} + 2g_xg_{xy}}{g + g_x^2}$$

We next compute the evolution equation of X from the evolution equation of g to show that $X_t \leq KX$, for some constant K, at the point P_0 . This will easily imply that $X \leq C$, on $0 \leq t \leq T$, as desired.

For the convenience of the reader, let us first present the computations in the simpler case where f satisfies the evolution Monge-Ampére equation

$$f_t = \det D^2 f$$

and hence $g = \sqrt{2f}$ satisfies the equation

(4.6)
$$g_t = g \det D^2 g + g_y^2 g_{xx} - 2g_x g_y g_{xy} + g_x^2 g_{yy}$$

To compute the evolution of X we differentiate twice the equation (1.4). Denoting by L the operator

$$LX := X_t - \{ (gg_{yy} + g_y^2) X_{xx} - 2(gg_{xy} + g_x g_y) X_{xy} + (gg_{xx} + g_x^2) X_{yy} \}$$

we find, after many tedious calculations, that at the maximum point P_0 where $g_y = 0$ and (4.4) and (4.5) hold, we have

$$LX = -\frac{4g}{g_x^2 + g} f_{xxx}^2 - \frac{12gg_x(\det D^2 g)}{g_x^2 + g} f_{xxx} - 4f_{xxy}^2 + \frac{6g_x^3 g_{xy}}{g_x^2 + g} f_{xxy}$$

$$+ \left(-\frac{4g^2}{g_x^2 + g} + 4g - 4g_x^2 \right) g_{yy}^2 + \left(-\frac{4g^2}{g_x^2 + g} + 3g_x^2 + 4g \right) (\det D^2 g) g_{yy}$$

$$+ \left(\frac{8g^2}{g_x^2 + 4} - 12g \right) (\det D^2 g)^2$$

After some more calculations and cancellations we obtain:

$$LX = -\frac{4g}{g_x^2 + g} f_{xxx}^2 - \frac{12gg_x(\det D^2 g)}{g_x^2 + g} f_{xxx} - 4f_{xxy}^2 + \frac{6g_x^3 g_{xy}}{g_x^2 + g} f_{xxy}$$
$$-4g_x^4 g_{yy}^2 + \left(-\frac{4g}{g_x^2 + g} + 1\right) (g \det D^2 g) g_{yy} + 3(g_x^2 + g) (\det D^2 g) g_{yy}$$
$$+ \left(\frac{-4g^2 - 12gg_x^2}{g_x^2 + g}\right) (\det D^2 g)^2$$

Rearranging the right hand side of the above inequality and deleting negative terms, we find that at the maximum point P_0 , we have:

$$LX \leq -\frac{3g}{g_x^2 + g} f_{xxx}^2 - \frac{12gg_x(\det D^2 g)}{g_x^2 + g} f_{xxx} - \frac{12gg_x^2}{g_x^2 + g} (\det D^2 g)^2$$

$$-3f_{xxy}^2 + \frac{6g_x^3 g_{xy}}{g_x^2 + g} f_{xxy} - \frac{3g_x^6 g_{xy}^2}{(g_x^2 + g)^2}$$

$$+ \left(-\frac{4g}{g_x^2 + g} + 1 \right) (g \det D^2 g) g_{yy}$$

$$+ \frac{3g_x^6 g_{xy}^2}{(g_x^2 + g)^2} + 3(g_x^2 + g) (\det D^2 g) g_{yy}$$

The sum of the terms in the first two lines is equal to

$$-\frac{3g(f_{xxx} + 2g_x \det D^2 g)^2}{g_x^2 + g} - 3\left(f_{xyy} - \frac{g_x^3 g_{xy}}{g_x^2 + g}\right)^2$$

which is negative. To estimate the rest of the terms, we use the estimate $c \leq g_t \leq c^{-1}$, proven in Corollary ..., implying that

$$c \le g\left(\det D^2 g\right) + g_x^2 g_{yy} \le c^{-1}$$

at the point P_0 . Since we are trying to estimate the maximum of $X = g_x^2 g_{yy} + \Delta f$ from above, and Δf is bounded, we can assume, with no loss of generality, that at the point P_0

$$c^{-1} \le \frac{g_x^2 g_{yy}}{2} \le X \le 2 g_x^2 g_{yy}$$

implying that

(4.7)
$$g(\det D^2 g) \le -g_x^2 g_{yy} + c^{-1} \le -\frac{g_x^2 g_{yy}}{2}.$$

Therefore

$$\left(-\frac{4g}{g_x^2+g}+1\right)\left(g\det D^2g\right)g_{yy} \le CX.$$

To estimate the last term, we will first bound the derivative g_{xy} using the inequality

$$0 \le g (\det D^2 g) + g_x^2 g_{yy} = (g_x^2 + g g_{xx}) g_{yy} - g g_{xy}^2$$

which shows that

$$(4.8) g g_{xy}^2 \le (g_x^2 + gg_{xx}) g_{yy} = f_{xx} g_{yy} \le C g_{yy}.$$

iFrom (4.7) and (4.8) we obtain the bounds

$$\det D^2 g \le -\frac{g_x^2 g_{yy}}{2g} \quad \text{and} \quad g_{xy}^2 \le \frac{C g_{yy}}{g}.$$

Hence,

$$\frac{3g_x^6 g_{xy}^2}{(g_x^2 + g)^2} + 3(g_x^2 + g) (\det D^2 g) g_{yy} \le \frac{3}{g} (C_1 X - C_2 X^2)$$

where C_1 and C_2 are positive constants which depend only on c. Hence, we can make this term negative by assuming that $X \geq C_1/C_2$ at P_0 . Combining the above bounds we conclude that, unless $X(P_0) \leq K$ for some absolute constant K, we have $LX \leq CX$ at the point P_0 . Since,

$$(gg_{yy} + g_y^2) X_{xx} - 2(gg_{xy} + g_x g_y) X_{xy} + (gg_{xx} + g_y^2) X_{yy} \le 0$$

at P_0 this readily implies that $X_t \leq CX$ at P_0 which is the desired bound.

We will know present the computations in the case of the Gauss Curvature Flow. To simplify the notation, let us set $I = 1 + g^2 g_x^2$ and $J = g + g_x^2$. Also, until the end of this proof, C will denote various constants depending only on $||g||_{C^1}$ and $||f||_{C^{1,1}}$. Denoting by LX the operator

$$LX := X_t - I^{-3/2} \{ (gg_{yy} + g_y^2) X_{xx} - 2(gg_{xy} + g_x g_y) X_{xy} + (gg_{xx} + g_x^2) X_{yy} \}$$

we find, after several calculations, that at the maximum point P_0 , X satisfies the inequality

$$LX \leq -\frac{4g f_{xxx}^2}{J I^{3/2}} + \left(\frac{-12g g_x (\det D^2 g)}{J I^{3/2}} + O(g)\right) f_{xxx} - \frac{4f_{xxy}^2}{I^{3/2}} + \left(\frac{6g_x}{I^{3/2}} + O(g)\right) g_{xy} f_{xxy}$$
$$+ C g_{yy} + \left(\frac{-4J}{I^{5/2}} + O(g)\right) g_{yy}^2 + \left(\left\{\frac{3J}{I^{3/2}} + O(g)\right\} (\det D^2 g) + O(g)\right) g_{yy}$$
$$+ \left(\frac{-12g g_x^2}{J I^{3/2}} + \frac{-4g^2}{J I^{3/2}} + O(g^3)\right) (\det D^2 g)^2 + C g^2 |\det D^2 g| + C g^2.$$

Here, and until the end of this proof, C will denote various constants depending only on $||g||_{C^1}$ and $||f||_{C^{1,1}}$. Also, we have denoted by O(g) various terms satisfying $|O(g)| \leq C g$. Completing the squares, as in the case of the evolution Monge-Ampére

equation shown above, we find after many calculations that:

$$\begin{split} LX &\leq -\frac{3g}{J\,I^{3/2}}(f_{xxx}+2g_x)^2 - \frac{3}{I^{3/2}}\,(f_{xxy}+g_xg_{xy})^2 \\ & \left(-\frac{gf_{xxx}^2}{J\,I^{3/2}} + O(g)\,f_{xxx}\right) + \left(-\frac{f_{xxy}^2}{I^{3/2}} + O(g)\,g_{xy}f_{xxy}\right) \\ & + C\,g_{yy} + \left(\frac{-4J}{I^{5/2}} + O(g)\right)g_{yy}^2 + \left(\left\{\frac{3J}{I^{3/2}} + O(g)\right\}\,(\det D^2g) + O(g)\right)g_{yy} \\ & + \left(\frac{-4g^2}{J\,I^{3/2}} + O(g^3)\right)\,(\det D^2g)^2 + \frac{3g_{xy}^2g_x^2}{I^{3/2}} + C\,g^2|\det D^2g| + C\,g^2. \end{split}$$

The two terms on the first line are negative. Also,

$$-\frac{gf_{xxx}^2}{JI^{3/2}} + O(g) f_{xxx} \le -\frac{gf_{xxx}^2}{2JI^{3/2}} + Cg \le C$$

on $g \leq 1$ while

$$-\frac{f_{xxy}^2}{I^{3/2}} + O(g) g_{xy} f_{xxy} \le -\frac{f_{xxy}^2}{2I^{3/2}} + Cgg_{xy} \le C.$$

Most of the remaining terms are either negative or can be estimated from $X = g_x^2 g_{yy}$ and the bounds $0 < c \le g_x^2$ and $|Dg| \le C$, $|g D^2 g| \le C$. We end up with the inequality

$$LX \le C(X+1) + 3I^{3/2} \left(J(\det D^2 g) + g_{xy}^2 g_x^2 g_{yy} \right).$$

The last term can be shown to be nonnegative, exactly as in the case of the Monge-Ampére equation, using the estimate

$$c \le \frac{g(\det D^2 g) + g_x^2 g_{yy}}{I^{3/2}} \le c^{-1}$$

and provided that $X \geq C$ is sufficiently large. We conclude that at the maximum point P_0 , either $X \leq C$, with C depeding only on $||g||_{C^1}$ and $||f||_{C^{1,1}}$, or

$$LX < CX$$
.

This readily implies that $X_t \leq CX$ at P_0 , from which the desired estimate follows.

Corollary 4.4. Under the hypotheses of Lemma 4.3, there exist a constant c > 0 depending only on ρ and the initial data, for which the

$$g_{\tau\tau} > c > 0$$

with τ denoting the tangential direction to the level sets of g.

$$\det D^2 f > c g.$$

We can express det D^2f as det $D^2f = f_{\nu\nu}f_{\tau\tau} - f_{\nu\tau}^2$, where ν and τ denote the normal and tangential directions to the level sets of g respectively. Then

$$f_{\nu\nu}f_{\tau\tau} \ge c + f_{\nu\tau}^2 \ge cg$$

which imples the bound

$$f_{\tau\tau} \ge \frac{c\,g}{f_{\nu\nu}} \ge \tilde{c}\,g$$

since $f_{\nu\nu} \leq C$. Since $f_{\tau\tau} = g g_{\tau\tau} + g_{\tau}^2 = g g_{\tau\tau}$ we conclude that $g_{\tau\tau} \geq \tilde{c}$, for some positive constant \tilde{c} depending only on the initial data and ρ .